Key Notes

Chapter-04

Quadratic Equation

- Quadratic Polynomial: A polynomial of the form $a x^{2}+b x+c$ is called a quadratic expression in the variable x. This is a polynomial of the second degree. In quadratic expression $a x^{2}+b x+c$, a is the coefficient of $x^{2}, \mathrm{~b}$ is the coefficient of x and c is the constant term (or coefficient of x°..
- Quadratic Equation: An equation of the form $a x^{2}+b x+c=0, a \neq 0$, is called a quadratic equation in one variable x , where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants.
- The equation ${ }^{2}+b x+c=0, \quad a \neq 0$ is the standard form of a quadratic equation, where a, b and c are real numbers.
- A real number α is said to be a root of the quadratic equation $\quad{ }^{2}+b x+c=0, a \neq 0$. If $\mathrm{a} \alpha^{2}+\mathrm{b} \alpha+\mathrm{c}=0$, the zeroes of quadratic polynomial ${ }^{2}+b x+c$ and the roots of the quadratic equation ${ }^{2}+b x+c=0$ are the same.
- If we can factorise ${ }^{2}+b x+c=0, a \neq 0$ into product of two linear factors, then the roots of the quadratic equation can be found by equating each factors to zero.
- The roots of a quadratic equation ${ }^{2}+b x+c=0, \quad a \neq 0$ are given by $\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}} 4 \mathrm{ac}}{2 \mathrm{a}}$, provided that $b^{2}-4 a c \geq 0$.
- A quadratic equation ${ }^{2}+b x+c=0, \quad a \neq 0$ has \qquad
(a) Two distinct and real roots, if $b^{2}-4 a c>0$.
(b) Two equal and real roots, if $\mathrm{b}^{2}-4 \mathrm{ac}=0$.
(c) Two roots are not real, if $b^{2}-4 a c<0$.
- A quadratic equation can also be solved by the method of completing the square.
(i) $a^{2}+2 a b+b^{2}=(a+b)^{2}$
(ii) $a^{2}-2 a b+b^{2}=(a-b)^{2}$
- Discriminant of the quadratic equation $\boldsymbol{x}^{2}+b x+c=0, \quad a \neq 0$ is given by $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}$.

